Cores of signed K_{4}-subdivisions

Zhouningxin Wang

Université Paris-Diderot

This is joint work with Reza Naserasr.

$$
\text { January 5, } 2019
$$

Outline

1 Introduction

- Basic definition
- Signed graph

2 Motivation
■ Jaeger-Zhang conjecture
3 Signed K_{4}-subdivision

- K_{4}-subdivision is a core

■ Signed K_{4}-subdivision is a core
4 Signed K_{4}-minor-free graphs

- Homomorphism of signed K_{4}-minor-free graphs

Basic definitions

- A subdivision of a graph G is a graph G^{\prime} which is obtained from G by subdividing some or all edges of G. The graph G has H-subdivision if G contains a subdivision of H as a subgraph.
- A minor of a graph G is a graph H obtained from G by a sequence of operators as deleting vertices, deleting edges and contracting edges in any order. The graph G has H-minor if it admits H as its minor.

Theorem

A graph G has K_{4}-minor if and only if G has K_{4}-subdivision. Generally, for H being a graph of degree at most 3, a graph G has H-minor if and only if G has H -subdivision.

Homomorphism of graphs

■ Given two graphs G and H, a homomorphism of G to H is a mapping $\varphi: V(G) \rightarrow V(H)$ such that if $x y \in E(G)$, then $\varphi(x) \varphi(y) \in E(H)$.

- A core of graph G is the smallest subgraph of G to which G admits a homomorphism, denoted by core(G). We say G is a core if it does not admit a homomorphism to any of its proper subgraphs.

Figure: Examples

Signed graph

- A signed graph is a graph G together with an assignment of signs from the multiplicative group $\{+,-\}$ to its edges, denoted by (G, Σ), where the signature Σ stands for a set of edges assigned with - for the graph G.
- Given a signed graph (G, Σ) and a vertex $v \in V(G)$, a resigning at v is an operator to multiply the signs of all edges which are incident to v by - . A signed graph (G, Σ) is a resigning of (G, Π) if it is obtained from (G, Π) by a sequence of resignings at vertices.
- We say (G, Σ) is equivalent to (G, Π) if (G, Σ) is a resigning of (G, Π).

Balance of cycle in the signed graph

The sign of a closed walk in signed graph is the product of signs of all edges in this closed walk. Especially, if a cycle is positive, we say it is balanced; if a cycle is negative, we say it is unbalanced.

Theorem (Zaslavsky,1982)

Two signed graphs $\left(G, \Sigma_{1}\right)$ and $\left(G, \Sigma_{2}\right)$ are equivalent if and only if they have the same set of unbalance cycles.

Homomorphism of signed graphs

Definition

A homomorphism of a signed graph (G, Σ) to (H, Π) is a mapping from the vertices and edges of G respectively to the vertices and edges of H such that adjacencies, incidences and signs of closed walks are preserved.

Definition

There exists a homomorphism of (G, Σ) to (H, Π) if there exists a signature Σ^{\prime} such that $\left(G, \Sigma^{\prime}\right) \equiv(G, \Sigma)$ and there exists a two-edge-colored homomorphism of $\left(G, \Sigma^{\prime}\right)$ to (H, Π).

Jaeger-Zhang conjecture

Conjecture (Jaeger, 1984)

If a graph G is $(4 p+1)$-edge-connected, then there exists a $\mathbb{Z}_{2 p+1}$-circular flow on G.

- This conjecture was proved for the case when the graph G is $(6 p+1)$-edge-connected in 2013 by Lovász etc. Moreover, by the definition of odd-connectivity, they proposed a stronger result.
- In 2018, Han. etc have disproved this conjecture by giving a counterexample.

Jaeger-Zhang conjecture

Conjecture (Klostermeyer, W., \& Zhang, C. Q., 2000)

If a planar graph G has odd-girth at least $4 k+1$, then there exists a homomorphism of G to $C_{2 k+1}$.

■ For $k=1$, we have known it as Grötzsch's theorem.
■ In 2000, Xuding ZHU showed that if the graph G has odd-girth $8 k-3$, then $G \rightarrow C_{2 k+1}$;
■ In 2002, Borodin etc. proved the conjecture for odd-girth of G being $\frac{20 k-2}{3}$;

- In 2013, from the view of flow, Lovász etc. gave the proof for this conjecture when the condition of odd-girth is $6 k+1$.

Bipartite analogue of Jaeger-Zhang conjecture

Conjecture (Naserasr, R., Rollová, E., \& Sopena, É. , 2013)

Let G be a bipartite and planar graph. If a signed graph (G, Σ) has unbalanced-girth at least $4 k-2$, then there exists a homomorphism of (G, Σ) to an unbalanced cycle $U C_{2 k}$.

K_{4}-subdivision

Suppose that G is a $\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$, then exactly one of the following conditions holds:

- the core of G is K_{2};
- the core of G is $C_{2 k+1}$ where $2 k+1$ is the odd girth of G;

■ the core of G is itself, i.e., G is a core.

Figure: $\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$

Conditions for K_{4}-subdivision being a core

Theorem

Let G be a $\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$. Suppose that the odd girth of G is $a+b+c$. The graph G is a core if and only if the following conditions are all satisfied:

- Every facial cycle is of odd length;
$\square b^{\prime}+c^{\prime}-a<a+b+c$;
- $a^{\prime}+b^{\prime}-c<a+b+c$;
$\square a^{\prime}+c^{\prime}-b<a+b+c$.

Let G be $\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$. The graph G^{x} is obtained from G by identifying the center vertex D with one vertex in the outer facial cycle.

Lemma

Let G be ($\left.a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$ with four odd facial cycles and $a+b+c$ be the odd girth of G. The graph G^{x} in the following figure admits a homomorphism to C_{a+b+c} if and only if this G^{x} satisfies one of following conditions:
$\square a^{\prime} \geq x, a^{\prime}=x(\bmod 2), b^{\prime} \geq a+b+x$ and $c^{\prime} \geq a+c-x ;$

- $b^{\prime} \geq c-x, a^{\prime} \neq x(\bmod 2), a^{\prime} \geq a+b+c-x$ and $c^{\prime} \geq b+x$.

A sketch of Proof

On one hand,
■ If G admits a homomorphism to C_{a+b+c}, then there exists one value x such that after identifying D with one vertex in the outer facial cycle we obtain one G^{\times}satisfying one of conditions in the previous lemma.
■ Without loss of generality, such conditions will imply an inequality which is a contradiction to $b^{\prime}+c^{\prime}-a<a+b+c$.

Figure: $\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$

On the other hand, suppose that $b^{\prime}+c^{\prime} \geq 2 a+b+c$, we have three cases:
$\square a<b^{\prime} \leq a+b$: We map D to one vertex in the edge $A C$ and take $x=a+b-b^{\prime}$.
■ $a+b<b^{\prime} \leq a+b+a^{\prime}$: We map D to one vertex in the edge $A B$ and take $y=b^{\prime}-(a+b)$.
$\square b^{\prime}>a+b+a^{\prime}$: There exists a homomorphism of b^{\prime}-path to $\left(a+b+a^{\prime}\right)$-path. Then we could map the rest odd cycle to C_{a+b+c} directly.

Figure: Cases

Classification of signed K_{4}-subdivision

- (4),(7),(9),(10) can not be cores;
- (1),(3) have same conditions for being cores; (11) has similar conditions as the previous two.
- (2),(5),(8) have similar conditions for being cores;(6) is one special case.

Signed bipartite K_{4}-subdivision

We define $\left(G_{a}, \Sigma\right)$ to be the $\left(a+1, b, c, a^{\prime}+1, b^{\prime}, c^{\prime}\right)$ - K_{4} as follows.

Figure: G_{a}, G_{b}, G_{c}

Lemma

Let (G, Σ) be a signed ($\left.a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$ with four unbalanced even facial cycles(or four unbalanced odd facial cycles). The graph (G, Σ) admits a homomorphism to $U C_{a+b+c}$ if and only if at least one of $\left(G_{a}, \Sigma\right)$, $\left(G_{b}, \Sigma\right)$, and $\left(G_{c}, \Sigma\right)$ admits a homomorphism to $U C_{a+b+c+1}$.

Figure: G_{a}, G_{b}, G_{c}

Signed bipartite K_{4}-subdivision

Theorem

Let G be a $\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)-K_{4}$ such that G is bipartite and Σ be a signature of G. Suppose that the unbalanced girth of G is $a+b+c$. Then the signed graph (G, Σ) is a core if and only if the following conditions are satisfied:

- Every facial cycle is unbalanced;
- $b^{\prime}+c^{\prime}-a<a+b+c$;
- $a^{\prime}+b^{\prime}-c<a+b+c$;
- $a^{\prime}+c^{\prime}-b<a+b+c$.

Homomorphism of signed K_{4}-minor-free graphs

Theorem

Let G be a K_{4}-minor free graph. All the signed graphs (G, Σ) admit homomorphisms to (H, Π) if and only if there exists a subgraph $\left(H^{\prime}, \Pi^{\prime}\right) \subset(H, \Pi)$, such that each edge of $\left(H^{\prime}, \Pi^{\prime}\right)$ belongs to at least one positive triangle and one negative triangle.

Thank you for your attention. Any questions?

This program has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.

