Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Cores of signed K_4 -subdivisions

$Zhouning xin \ WANG$

Université Paris-Diderot

This is joint work with Reza Naserasr.

January 5, 2019

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Outline

1 Introduction

- Basic definition
- Signed graph

2 Motivation

Jaeger-Zhang conjecture

3 Signed K₄-subdivision

- *K*₄-subdivision is a core
- Signed K₄-subdivision is a core

4 Signed K_4 -minor-free graphs

■ Homomorphism of signed *K*₄-minor-free graphs

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Basic definitions

- A subdivision of a graph G is a graph G' which is obtained from G by subdividing some or all edges of G. The graph G has H-subdivision if G contains a subdivision of H as a subgraph.
- A minor of a graph G is a graph H obtained from G by a sequence of operators as *deleting vertices*, *deleting edges and contracting edges* in any order. The graph G has H-minor if it admits H as its minor.

Theorem

A graph G has K_4 -minor if and only if G has K_4 -subdivision. Generally, for H being a graph of degree at most 3, a graph G has H-minor if and only if G has H-subdivision.

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Homomorphism of graphs

Given two graphs G and H, a homomorphism of G to H is a mapping φ : V(G) → V(H) such that if xy ∈ E(G), then φ(x)φ(y) ∈ E(H).
A core of graph G is the smallest subgraph of G to which G admits a homomorphism, denoted by core(G). We say G is a core if it does not admit a homomorphism to any of its proper subgraphs.

Figure: Examples

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Signed graph

- A signed graph is a graph G together with an assignment of signs from the multiplicative group {+, -} to its edges, denoted by (G, Σ), where the signature Σ stands for a set of edges assigned with - for the graph G.
- Given a signed graph (G, Σ) and a vertex v ∈ V(G), a resigning at v is an operator to multiply the signs of all edges which are incident to v by −. A signed graph (G, Σ) is a resigning of (G, Π) if it is obtained from (G, Π) by a sequence of resignings at vertices.
- We say (G, Σ) is equivalent to (G, Π) if (G, Σ) is a resigning of (G, Π).

Balance of cycle in the signed graph

The sign of a closed walk in signed graph is the product of signs of all edges in this closed walk. Especially, if a cycle is positive, we say it is balanced; if a cycle is negative, we say it is unbalanced.

Theorem (Zaslavsky, 1982)

Two signed graphs (G, Σ_1) and (G, Σ_2) are equivalent if and only if they have the same set of unbalance cycles.

Homomorphism of signed graphs

Definition

A homomorphism of a signed graph (G, Σ) to (H, Π) is a mapping from the vertices and edges of G respectively to the vertices and edges of H such that adjacencies, incidences and signs of closed walks are preserved.

Definition

There exists a homomorphism of (G, Σ) to (H, Π) if there exists a signature Σ' such that $(G, \Sigma') \equiv (G, \Sigma)$ and there exists a two-edge-colored homomorphism of (G, Σ') to (H, Π) .

Jaeger-Zhang conjecture

Conjecture (Jaeger, 1984)

If a graph G is (4p + 1)-edge-connected, then there exists a \mathbb{Z}_{2p+1} -circular flow on G.

- This conjecture was proved for the case when the graph G is (6p+1)-edge-connected in 2013 by Lovász etc. Moreover, by the definition of odd-connectivity, they proposed a stronger result.
- In 2018, Han. etc have disproved this conjecture by giving a counterexample.

Jaeger-Zhang conjecture

Conjecture (Klostermeyer, W., & Zhang, C. Q., 2000)

If a planar graph G has odd-girth at least 4k + 1, then there exists a homomorphism of G to C_{2k+1} .

- For k = 1, we have known it as Grötzsch's theorem.
- In 2000, Xuding ZHU showed that if the graph G has odd-girth 8k 3, then $G \rightarrow C_{2k+1}$;
- In 2002, Borodin etc. proved the conjecture for odd-girth of G being $\frac{20k-2}{3}$;
- In 2013, from the view of flow, Lovász etc. gave the proof for this conjecture when the condition of odd-girth is 6k + 1.

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Bipartite analogue of Jaeger-Zhang conjecture

Conjecture (Naserasr, R., Rollová, E., & Sopena, É., 2013)

Let G be a bipartite and planar graph. If a signed graph (G, Σ) has unbalanced-girth at least 4k - 2, then there exists a homomorphism of (G, Σ) to an unbalanced cycle UC_{2k} .

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

*K*₄-subdivision

Suppose that G is a (a, b, c, a', b', c')- K_4 , then exactly one of the following conditions holds:

- the core of G is K_2 ;
- the core of G is C_{2k+1} where 2k + 1 is the odd girth of G;
- the core of *G* is itself, i.e., *G* is a core.

Figure: (a, b, c, a', b', c')- K_4

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Conditions for K_4 -subdivision being a core

Theorem

Let G be a (a, b, c, a', b', c')-K₄. Suppose that the odd girth of G is a + b + c. The graph G is a core if and only if the following conditions are all satisfied:

Every facial cycle is of odd length;

■
$$b' + c' - a < a + b + c;$$

$$a' + b' - c < a + b + c;$$

• a' + c' - b < a + b + c.

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Let G be $(a, b, c, a', b', c') - K_4$. The graph G^{\times} is obtained from G by identifying the center vertex D with one vertex in the outer facial cycle.

Lemma

Let G be $(a, b, c, a', b', c') - K_4$ with four odd facial cycles and a + b + c be the odd girth of G. The graph G^{\times} in the following figure admits a homomorphism to C_{a+b+c} if and only if this G^{\times} satisfies one of following conditions:

■
$$a' \ge x$$
, $a' = x \pmod{2}$, $b' \ge a + b + x$ and $c' \ge a + c - x$;

•
$$b' \ge c - x$$
, $a' \ne x \pmod{2}$, $a' \ge a + b + c - x$ and $c' \ge b + x$.

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

A sketch of Proof

On one hand,

- If G admits a homomorphism to C_{a+b+c}, then there exists one value x such that after identifying D with one vertex in the outer facial cycle we obtain one G^x satisfying one of conditions in the previous lemma.
- Without loss of generality, such conditions will imply an inequality which is a contradiction to b' + c' a < a + b + c.

Figure: $(a, b, c, a', b', c') - K_4$

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

On the other hand, suppose that $b' + c' \ge 2a + b + c$, we have three cases:

- $a < b' \le a + b$: We map D to one vertex in the edge AC and take x = a + b b'.
- $a + b < b' \le a + b + a'$: We map D to one vertex in the edge AB and take y = b' (a + b).
- b' > a + b + a': There exists a homomorphism of b'-path to (a + b + a')-path. Then we could map the rest odd cycle to C_{a+b+c} directly.

Figure: Cases

Cores of signed K4-subdivisions

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Classification of signed K_4 -subdivision

- (4),(7),(9),(10) can not be cores;
- (1),(3) have same conditions for being cores; (11) has similar conditions as the previous two.
- (2),(5),(8) have similar conditions for being cores;(6) is one special case.

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Signed bipartite K_4 -subdivision

We define (G_a, Σ) to be the (a + 1, b, c, a' + 1, b', c')- K_4 as follows.

Figure: G_a , G_b , G_c

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Lemma

Let (G, Σ) be a signed (a, b, c, a', b', c')- K_4 with four unbalanced even facial cycles(or four unbalanced odd facial cycles). The graph (G, Σ) admits a homomorphism to UC_{a+b+c} if and only if at least one of (G_a, Σ) , (G_b, Σ) , and (G_c, Σ) admits a homomorphism to $UC_{a+b+c+1}$.

Figure: G_a , G_b , G_c

Signed bipartite K_4 -subdivision

Theorem

Let G be a (a, b, c, a', b', c')-K₄ such that G is bipartite and Σ be a signature of G. Suppose that the unbalanced girth of G is a + b + c. Then the signed graph (G, Σ) is a core if and only if the following conditions are satisfied:

Every facial cycle is unbalanced;

■
$$b' + c' - a < a + b + c;$$

•
$$a' + b' - c < a + b + c;$$

•
$$a' + c' - b < a + b + c$$
.

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Homomorphism of signed K_4 -minor-free graphs

Theorem

Let G be a K₄-minor free graph. All the signed graphs (G, Σ) admit homomorphisms to (H, Π) if and only if there exists a subgraph $(H', \Pi') \subset (H, \Pi)$, such that each edge of (H', Π') belongs to at least one positive triangle and one negative triangle.

Introduction	Motivation	Signed K ₄ -subdivision	Signed K ₄ -minor-free graphs

Thank you for your attention. Any questions?

co funded by the Correstor

This program has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.